Personalized Physiological Models in Intensive-Care Medicine

Stuart Russell
Computer Science Division, UC Berkeley
Neurological Surgery, UC San Francisco

In collaboration with
Geoff Manley, Prof of Neurology and Neurosurgery at UCSF and Chief of Neurotrauma, SFGH
Intensive-Care Medicine

- Patients’ bodies not functioning normally, would die otherwise
 - ~200 medical procedures per day per patient
- US ICUs:
 - 5 million patients per year, 500,000 die
 - $200-400B/year (comparable to world semiconductor industry)
Intensive-Care Medicine

- Patients’ bodies not functioning normally, would die otherwise
 - ~150 medical procedures per day per patient
- US ICUs:
 - 5 million patients per year, 500,000 die
 - $200-400B/year (comparable to world semiconductor industry)
- Goal: 50% reduction in mortality, length of stay
Approach

- Data:
 - Continuous, high-frequency physiological data
240Hz, ~40 variables, ~200 hours
Approach

- **Data:**
 - Continuous, high-frequency physiological data
 - Sporadic data on interventions, drugs, lab analyses
Approach

- Data:
 - Continuous, high-frequency physiological data
 - Sporadic data on interventions, drugs, lab analyses

- Methods:
 - Patient-adaptive models of physiology and disease state
 - Dynamic Bayesian networks as a core, generic computing technology
 - Data refine the patient-specific model and state estimate over time
1970s: physiology models = deterministic differential equations

10% of Guyton 1972
2010s: probabilistic physiology/sensing

- Perfect models + perfect data = perfect predictions
- Real world: incomplete models, noisy data, sick patients
- Probabilistic models bridge the gap; allow for uncertainty in
 - Underlying physiological knowledge
 - Properties and state of specific patient
 - Actual measurements
- ITFoM seems prepared to
 - Embrace a probabilistic methodology
 - Develop the computational technology to support it
Approach

- **Data:**
 - Continuous, high-frequency physiological data
 - Sporadic data on interventions, drugs, lab analyses

- **Methods:**
 - Patient-adaptive models of physiology and disease state
 - Dynamic Bayesian networks as a core, generic computing technology
 - Data refine the patient-specific model and state estimate over time

- **Results**
 - Reduced ICU false alarms from 90% to 5% (UCB/UCSF)
 - Detection of TBI cerebral edema, autoregulation failure, etc
 - Noninvasive intracranial pressure measurement (UCLA, MIT)
 - Reduced neonatal sepsis mortality (UVA)
 - Substantially improved neonatal prognosis score (Stanford)
Physiscore: novel tool for risk prediction

- Identifies premature infants at risk for major complications

<table>
<thead>
<tr>
<th></th>
<th>APGAR (Standard of care)</th>
<th>CRIB</th>
<th>SNAP-II</th>
<th>SNAPPE-II</th>
<th>Physiscore (Our tool)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from birth</td>
<td>5 mins</td>
<td>12 hours</td>
<td>12 hours</td>
<td>12 hours</td>
<td>3 hours after birth</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.69</td>
<td>0.85</td>
<td>0.82</td>
<td>0.87</td>
<td>0.91</td>
</tr>
<tr>
<td>Invasive testing</td>
<td></td>
</tr>
</tbody>
</table>

Saria et. al, *Integration of Early Physiological Responses Predicts Later Illness Severity in Preterm Infants*, Science Trans. Med. 2010 (Cover article)
Next steps

- Complete high-level physiology model for all systems
 - Quantified uncertainty from populations, experimental studies
 - Notation standards for uncertain models
 - Data collection standards for all ICUs (IMEDES consortium)
 - Demonstrate accurate inference of all key disease states
 - Demonstrate accurate therapy planning

- Connect to more detailed molecular/finite-element models
 - Integrate –omic and imaging data into predictions
Next steps

- Complete high-level physiology model for all systems
 - Quantified uncertainty from populations, experimental studies
 - Notation standards for uncertain models
 - Data collection standards for all ICUs (IMEDES consortium)
 - Demonstrate accurate inference of all key disease states
 - Demonstrate accurate therapy planning
- Connect to more detailed molecular/finite-element models
 - Integrate –omic and imaging data into prediction
- Detailed modeling works for looking after nuclear warheads; it can work for humans too